z-logo
Premium
Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces
Author(s) -
Hajibayov Mubariz G.,
Samko Stefan
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710204
Subject(s) - mathematics , standard probability space , lp space , bounded function , exponent , measure (data warehouse) , monotonic function , measurable function , maximal function , space (punctuation) , hardy space , function (biology) , homogeneous , function space , pure mathematics , lebesgue integration , kernel (algebra) , mathematical analysis , banach space , combinatorics , linguistics , philosophy , database , evolutionary biology , computer science , biology
We consider generalized potential operators with the kernel $\frac{a([\varrho (x,y)])}{[\varrho (x,y)]^N}$ on bounded quasimetric measure space ( X , μ, d ) with doubling measure μ satisfying the upper growth condition μ B ( x , r ) ⩽ Kr N , N ∈ (0, ∞). Under some natural assumptions on a ( r ) in terms of almost monotonicity we prove that such potential operators are bounded from the variable exponent Lebesgue space L p (⋅) ( X , μ) into a certain Musielak‐Orlicz space L p ( X , μ) with the N‐function Φ( x , r ) defined by the exponent p ( x ) and the function a ( r ). A reformulation of the obtained result in terms of the Matuszewska‐Orlicz indices of the function a ( r ) is also given. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom