z-logo
Premium
Critical metrics of the eigenvalue gaps of Laplace‐Beltrami operators
Author(s) -
Hou Songbo
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710199
Subject(s) - mathematics , laplace operator , conformal map , eigenvalues and eigenvectors , metric (unit) , manifold (fluid mechanics) , class (philosophy) , space (punctuation) , dimension (graph theory) , pure mathematics , riemannian manifold , mathematical analysis , computer science , physics , mechanical engineering , operations management , quantum mechanics , operating system , artificial intelligence , engineering , economics
Let M be a compact smooth manifold of dimension n ⩾ 2. We investigate critical metrics of the Laplacian eigenvalue gaps considered as functionals on the space of Riemannian metrics or a conformal class of metrics on M . We give necessary and sufficient conditions for a metric to be critical for such a functional. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom