z-logo
Premium
Correlation of fractions with divisibility constraints
Author(s) -
Xiong Maosheng,
Zaharescu Alexandru
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710185
Subject(s) - combinatorics , mathematics , sequence (biology) , limiting , divisibility rule , function (biology) , square (algebra) , euler's totient function , euler's formula , mathematical analysis , geometry , chemistry , mechanical engineering , biochemistry , evolutionary biology , engineering , biology
Let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ B=(B_{Q}\!)_{{Q \in {\mathbb N}}} $\end{document} be an increasing sequence of positive square free integers satisfying the condition that $ B_{{Q_1}}\vert B_{{Q_2}} $ whenever Q 1 < Q 2 . For any subinterval I ⊂ [0, 1], let\documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{mathrsfs}\usepackage{bm} \begin{document}\pagestyle{empty}$$ {\mathscr{F}_{{B}\!,_Q}(I)}=\left\lbrace a/q \in I: 1 \le a \le q \le Q, \gcd (a,q)=\gcd (q,B_{Q}\!)=1 \right\rbrace . $$\end{document} It is shown that if B Q ≪ Q log log  Q /4 , then the limiting pair correlation function of the sequence \documentclass{article}\usepackage{amsmath,amssymb,mathrsfs,bm}\pagestyle{empty}\begin{document}$ ({\mathscr{F}_{{B}\!,_Q}(I)})_{Q \in {\mathbb N}} $\end{document} exists and is independent of the subinterval I . Moreover, the sequence is Poissonian if $ \lim_{Q \rightarrow \infty }{{\varphi (B_{Q}\!)}\over{B_{Q}\!}} = 0 $ , and exhibits a very strong repulsion if $ \lim_{Q \rightarrow \infty }{{\varphi (B_{Q}\!)}\over{B_{Q}\!}} \ne 0 $ , where φ is Euler's totient function. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom