z-logo
Premium
Uniqueness of weak solutions in critical space of the 3‐D time‐dependent Ginzburg‐Landau equations for superconductivity
Author(s) -
Fan Jishan,
Gao Hongjun
Publication year - 2010
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710083
Subject(s) - uniqueness , bar (unit) , mathematics , mathematical physics , boundary (topology) , space (punctuation) , superconductivity , coulomb , combinatorics , mathematical analysis , physics , condensed matter physics , quantum mechanics , linguistics , philosophy , meteorology , electron
We prove the uniqueness of weak solutions of the 3‐D time‐dependent Ginzburg‐Landau equations for super‐conductivity with initial data ( ψ 0 , A 0 )∈ L 2 under the hypothesis that ( ψ , A ) ∈ L s (0, T ; L r ,∞ ) × $ L^{\bar s} $ (0, T ; $ L^{\bar r, \infty}) $ with Coulomb gauge for any ( r , s ) and $ (\bar r, \bar s) $ satisfying $ {2 \over {s}} $ + $ {3 \over {r}} $ = 1, $ {1 \over {\bar s}} $ + $ {3 \over {\bar r}} $ = 1, $ \bar s $ ≥ $ {{2s} \over {s-2}} $ , $ \bar r $ ≥ $ {{2r} \over {r-2}} $ and 3 < r ≤ 6, 3 < $ \bar r $ ≤ ∞. Here L r ,∞ ≡ $ L^r_w $ is the Lorentz space. As an application, we prove a uniqueness result with periodic boundary condition when ψ 0 ∈ $ L{{25} \over {7}} $ , A 0 ∈ L 3 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom