Premium
Uniqueness of weak solutions in critical space of the 3‐D time‐dependent Ginzburg‐Landau equations for superconductivity
Author(s) -
Fan Jishan,
Gao Hongjun
Publication year - 2010
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710083
Subject(s) - uniqueness , bar (unit) , mathematics , mathematical physics , boundary (topology) , space (punctuation) , superconductivity , coulomb , combinatorics , mathematical analysis , physics , condensed matter physics , quantum mechanics , linguistics , philosophy , meteorology , electron
We prove the uniqueness of weak solutions of the 3‐D time‐dependent Ginzburg‐Landau equations for super‐conductivity with initial data ( ψ 0 , A 0 )∈ L 2 under the hypothesis that ( ψ , A ) ∈ L s (0, T ; L r ,∞ ) × $ L^{\bar s} $ (0, T ; $ L^{\bar r, \infty}) $ with Coulomb gauge for any ( r , s ) and $ (\bar r, \bar s) $ satisfying $ {2 \over {s}} $ + $ {3 \over {r}} $ = 1, $ {1 \over {\bar s}} $ + $ {3 \over {\bar r}} $ = 1, $ \bar s $ ≥ $ {{2s} \over {s-2}} $ , $ \bar r $ ≥ $ {{2r} \over {r-2}} $ and 3 < r ≤ 6, 3 < $ \bar r $ ≤ ∞. Here L r ,∞ ≡ $ L^r_w $ is the Lorentz space. As an application, we prove a uniqueness result with periodic boundary condition when ψ 0 ∈ $ L{{25} \over {7}} $ , A 0 ∈ L 3 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)