z-logo
Premium
Quantum field theory meets Hopf algebra
Author(s) -
Brouder Christian
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610828
Subject(s) - hopf algebra , mathematics , noncommutative geometry , representation theory of hopf algebras , quasitriangular hopf algebra , feynman diagram , quantum group , quantum field theory , algebra over a field , renormalization , pure mathematics , division algebra , field (mathematics) , algebraic number , current algebra , mathematical physics , mathematical analysis
This paper provides a primer in quantum field theory (QFT) based on Hopf algebra and describes new Hopf algebraic constructions inspired by QFT concepts. The following QFT concepts are introduced: chronological products, S ‐matrix, Feynman diagrams, connected diagrams, Green functions, renormalization. The use of Hopf algebra for their definition allows for simple recursive derivations and leads to a correspondence between Feynman diagrams and semi‐standard Young tableaux. Reciprocally, these concepts are used as models to derive Hopf algebraic constructions such as a connected coregular action or a group structure on the linear maps from S ( V ) to V . In many cases, noncommutative analogues are derived (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom