z-logo
Premium
An expansive multiplier property for operator‐valued Bergman inner functions
Author(s) -
Olofsson Anders
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610807
Subject(s) - biharmonic equation , mathematics , expansive , multiplier (economics) , norm (philosophy) , property (philosophy) , pure mathematics , operator (biology) , class (philosophy) , mathematical analysis , algebra over a field , philosophy , compressive strength , materials science , repressor , artificial intelligence , law , macroeconomics , boundary value problem , chemistry , computer science , composite material , biochemistry , epistemology , political science , transcription factor , economics , gene
We show that operator‐valued Bergman inner functions have the so‐called expansive multiplier property generalizing a well‐known result of Hedenmalm in the scalar case. This analysis leads to norm bounds for input output maps for a related class of discrete time linear systems. The proof uses properties of the biharmonic Green function (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom