z-logo
Premium
On extensions of some Flugede–Putnam type theorems involving ( p, k )‐quasihyponormal, spectral, and dominant operators
Author(s) -
Tanahashi Kotaro,
Patel S. M.,
Uchiyama Atsushi
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610787
Subject(s) - mathematics , hilbert space , integer (computer science) , type (biology) , operator (biology) , discrete mathematics , spectral properties , space (punctuation) , pure mathematics , combinatorics , chemistry , ecology , biochemistry , computational chemistry , repressor , computer science , transcription factor , gene , biology , programming language , linguistics , philosophy
A Hilbert space operator S is called ( p, k )‐quasihyponormal if S * k (( S * S ) p – ( SS *) p ) S k ≥ 0 for an integer k ≥ 1 and 0 < p ≤ 1. In the present note, we consider ( p, k )‐quasihyponormal operator S ∈ B ( H ) such that SX = XT for some X ∈ B ( K,H ) and prove the Fuglede–Putnam type theorems when the adjoint of T ∈ B ( K ) is either ( p, k )‐quasihyponormal or dominant or a spectral operator (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom