z-logo
Premium
Almost sure central limit theorem for partial sums and maxima
Author(s) -
Zuoxiang Peng,
Lili Wang,
Nadarajah Saralees
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610760
Subject(s) - mathematics , lipschitz continuity , maxima , bounded function , limit (mathematics) , combinatorics , distribution (mathematics) , central limit theorem , function (biology) , random variable , image (mathematics) , mathematical analysis , statistics , art , evolutionary biology , performance art , biology , art history , artificial intelligence , computer science
Let X , X 1 , X 2 , … be i.i.d. random variables with nondegenerate common distribution function F , satisfying EX = 0, EX 2 = 1. Let X i and M n = max{ X i , 1 ≤ i ≤ n }. Suppose there exists constants a n > 0, b n ∈ R and a nondegenrate distribution G ( y ) such thatThen, we havealmost surely, where f ( x , y ) denotes the bounded Lipschitz 1 function and Φ( x ) is the standard normal distribution function (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom