z-logo
Premium
A Hardy inequality in a twisted Dirichlet–Neumann waveguide
Author(s) -
Kovařík H.,
Krejčiřík D.
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610667
Subject(s) - mathematics , dirichlet distribution , neumann boundary condition , laplace operator , boundary (topology) , boundary value problem , von neumann architecture , simple (philosophy) , inequality , mathematical analysis , pure mathematics , philosophy , epistemology
We consider the Laplacian in a straight strip, subject to a combination of Dirichlet and Neumann boundary conditions. We show that a switch of the respective boundary conditions leads to a Hardy inequality for the Laplacian. As a byproduct of our method, we obtain a simple proof of a theorem of Dittrich and Kříž [5]. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom