Premium
A Hardy inequality in a twisted Dirichlet–Neumann waveguide
Author(s) -
Kovařík H.,
Krejčiřík D.
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610667
Subject(s) - mathematics , dirichlet distribution , neumann boundary condition , laplace operator , boundary (topology) , boundary value problem , von neumann architecture , simple (philosophy) , inequality , mathematical analysis , pure mathematics , philosophy , epistemology
We consider the Laplacian in a straight strip, subject to a combination of Dirichlet and Neumann boundary conditions. We show that a switch of the respective boundary conditions leads to a Hardy inequality for the Laplacian. As a byproduct of our method, we obtain a simple proof of a theorem of Dittrich and Kříž [5]. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)