Premium
Solution of a multiple Nevanlinna–Pick problem for Carathéodory functions via orthogonal rational functions in the matrix case
Author(s) -
Lasarow Andreas
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200610588
Subject(s) - mathematics , rational function , matrix (chemical analysis) , algebra over a field , pure mathematics , mathematical analysis , composite material , materials science
We consider an interpolation problem of Nevanlinna–Pick type for matrix‐valued Carathéodory functions, where the values of the functions and its derivatives up to certain orders are given at finitely many points of the open unit disk. For the non‐degenerate case, i.e., in the particular situation that a specific block matrix (which is formed by the given data in the problem) is positive Hermitian, the solution set of this problem is described in terms of orthogonal rational matrix‐valued functions. These rational matrix functions play here a similar role as Szegő's orthogonal polynomials on the unit circle in the classical case of the trigonometric moment problem. In particular, we present and use a connection between Szegő and Schur parameters for orthogonal rational matrix‐valued functions which in the primary situation of orthogonal polynomials was found by Geronimus. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)