z-logo
Premium
On the number of positive solutions of elliptic systems
Author(s) -
O'Regan Donal,
Wang Haiyan
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200513554
Subject(s) - sublinear function , mathematics , multiplicity (mathematics) , combinatorics , dirichlet distribution , mathematical analysis , boundary value problem
The paper deals with the existence, multiplicity and nonexistence of positive radial solutions for the elliptic system div(|∇   u   i| p –2 ∇   u   i) + λk i (| x |) f i ( u 1 , …, u n ) = 0, p > 1, R 1 < | x | < R 2 , u i ( x ) = 0, on | x | = R 1 and R 2 , i = 1, …, n , x ∈ ℝ N , where k i and f i , i = 1, …, n , are continuous and nonnegative functions. Let u = ( u 1 , …, u n ), φ ( t ) = | t | p –2 t , f i 0 = lim ‖ u ‖→0 (( f i ( u ))/( φ (‖ u ‖))), f i ∞ = lim ‖ u ‖→∞ (( f i ( u ))/( φ (‖ u ‖))), i = 1, …, n , f = ( f 1 , …, f n ), f 0 = ∑ ni =1 f i 0 and f ∞ = ∑ ni =1 f i ∞ . We prove that either f 0 = 0 and f ∞ = ∞ (superlinear), or f 0 = ∞and f ∞ = 0 (sublinear), guarantee existence for all λ > 0. In addition, if f i ( u ) > 0 for ‖ u ‖ > 0, i = 1, …, n , then either f 0 = f ∞ = 0, or f 0 = f ∞ = ∞, guarantee multiplicity for sufficiently large, or small λ , respectively. On the other hand, either f 0 and f ∞ > 0, or f 0 and f ∞ < ∞ imply nonexistence for sufficiently large, or small λ , respectively. Furthermore, all the results are valid for Dirichlet/Neumann boundary conditions. We shall use fixed point theorems in a cone. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom