z-logo
Premium
Limit theorems on locally compact Abelian groups
Author(s) -
Barczy Mátyás,
Bendikov Alexander,
Pap Gyula
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510709
Subject(s) - mathematics , haar measure , abelian group , locally compact space , limit (mathematics) , measure (data warehouse) , locally compact group , pure mathematics , discrete mathematics , combinatorics , mathematical analysis , database , computer science
We prove limit theorems for row sums of a rowwise independent infinitesimal array of random variables with values in a locally compact Abelian group. First we give a proof of Gaiser's theorem [4, Satz 1.3.6], since it does not have an easy access and it is not complete. This theorem gives sufficient conditions for convergence of the row sums, but the limit measure cannot have a nondegenerate idempotent factor. Then we prove necessary and sufficient conditions for convergence of the row sums, where the limit measure can be also a nondegenerate Haar measure on a compact subgroup. Finally, we investigate special cases: the torus group, the group of p ‐adic integers and the p ‐adic solenoid. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom