z-logo
Premium
Boundedness of multilinear commutators of generalized fractional integrals
Author(s) -
Mo Huixia,
Lu Shanzhen
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510681
Subject(s) - mathematics , multilinear map , commutator , semigroup , generator (circuit theory) , kernel (algebra) , combinatorics , pure mathematics , algebra over a field , physics , power (physics) , lie conformal algebra , quantum mechanics
Let L be the infinitesimal generator of an analytic semigroup on L 2 (ℝ n ) with Gaussian kernel bound, and let L – α /2 be the fractional integral of L for 0 < α < n . Suppose that b = ( b 1 , b 2 , …, b m ) is a finite family of locally integral functions, then the multilinear commutator generated by b and L – α /2 is defined by L – α /2 b f = [ b m , …, [ b 2 , [ b 1 , L – α /2 ]], …, ] f , where m ∈ ℤ + . When b 1 , b 2 , …, b m ∈ BMO or b j ∈ Λ   β   j(0 < β j < 1) for 1 ≤ j ≤ m , the authors study the boundedness of L – α /2 b . (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom