z-logo
Premium
Lower bounds for Seshadri constants
Author(s) -
Eckl Thomas
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510664
Subject(s) - mathematics , line bundle , conjecture , quotient , characterization (materials science) , pure mathematics , algebraic number , hermitian matrix , line (geometry) , constant (computer programming) , mathematical analysis , geometry , materials science , computer science , programming language , nanotechnology
One of Demailly's characterization of Seshadri constants on ample line bundles works with Lelong numbers of certain positive singular hermitian metrics. In this note this is translated into algebraic terms by using sections of multiples of the line bundle. The resulting formula for Seshadri constants is applied to compute Seshadri constants on blown up products of curves, to disprove a conjectured characterization of maximal rationally connected quotients and to introduce a new approach to Nagata's conjecture. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here