z-logo
Premium
Variational principles for symmetric bilinear forms
Author(s) -
Danciger Jeffrey,
Garcia Stephan Ramon,
Putinar Mihai
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510641
Subject(s) - mathematics , hilbert space , eigenvalues and eigenvectors , spectrum (functional analysis) , toeplitz matrix , bilinear interpolation , operator (biology) , minimax , pure mathematics , domain (mathematical analysis) , bilinear form , sequence (biology) , space (punctuation) , planar , mathematical analysis , mathematical optimization , quantum mechanics , computer science , biochemistry , statistics , physics , chemistry , genetics , repressor , biology , transcription factor , gene , computer graphics (images) , operating system
Every compact symmetric bilinear form B on a complex Hilbert space produces, via an antilinear representing operator, a real spectrum consisting of a sequence decreasing to zero. We show that the most natural analog of Courant's minimax principle for B detects only the evenly indexed eigenvalues in this spectrum. We explain this phenomenon, analyze the extremal objects, and apply this general framework to the Friedrichs operator of a planar domain and to Toeplitz operators and their compressions. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom