z-logo
Premium
Gorenstein categories and Tate cohomology on projective schemes
Author(s) -
Enochs E.,
Estrada S.,
García–Rozas J. R.
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510622
Subject(s) - mathematics , injective function , functor , pure mathematics , scheme (mathematics) , projective test , derived category , cohomology , mathematical analysis
We study Gorenstein categories. We show that such a category has Tate cohomological functors and Avramov–Martsinkovsky exact sequences connecting the Gorenstein relative, the absolute and the Tate cohomological functors. We show that such a category has what Hovey calls an injective model structure and also a projective model structure in case the category has enough projectives. As examples we show that if X is a locally Gorenstein projective scheme then the category ( X ) of quasi‐coherent sheaves on X is such a category and so has these features. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here