z-logo
Premium
Behavior of the constant in Korenblum's maximum principle
Author(s) -
Wang Chunije
Publication year - 2008
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510616
Subject(s) - mathematics , constant (computer programming) , annulus (botany) , unit (ring theory) , unit disk , space (punctuation) , plane (geometry) , combinatorics , maximum principle , mathematical analysis , mathematical physics , geometry , philosophy , mathematics education , computer science , programming language , mathematical optimization , linguistics , botany , optimal control , biology
Let A p () ( p ≥ 1) be the Bergman space over the open unit disk in the complex plane. Korenblum's maximum principle states that there is an absolute constant c ∈ (0, 1) (may depend on p ), such that whenever | f ( z )| ≤ | g ( z )| ( f , g ∈ A p ()) in the annulus c < | z | < 1, then ∥ f   A   p≤ ∥ g ∥   A   p. For p ≥ 1, let c p be the largest value of c for which Korenblum's maximum principle holds. In this note we prove that c p → 1 as p → ∞. Thus we give a positive answer of a question of Hinkkanen. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom