z-logo
Premium
Well‐posedness and long time behavior of a parabolic‐hyperbolic phase‐field system with singular potentials
Author(s) -
Grasselli Maurizio,
Miranville Alain,
Pata Vittorino,
Zelik Sergey
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510560
Subject(s) - mathematics , uniqueness , logarithm , mathematical analysis , attractor , inertial frame of reference , singular perturbation , hyperbolic partial differential equation , parabolic partial differential equation , heat equation , exponential function , singular solution , partial differential equation , classical mechanics , physics
In this article, we study the long time behavior of a parabolic‐hyperbolic system arising from the theory of phase transitions. This system consists of a parabolic equation governing the (relative) temperature which is nonlinearly coupled with a weakly damped semilinear hyperbolic equation ruling the evolution of the order parameter. The latter is a singular perturbation through an inertial term of the parabolic Allen–Cahn equation and it is characterized by the presence of a singular potential, e.g., of logarithmic type, instead of the classical double‐well potential. We first prove the existence and uniqueness of strong solutions when the inertial coefficient ε is small enough. Then, we construct a robust family of exponential attractors (as ε goes to 0). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom