Premium
Singular operators in variable spaces L p (·) (Ω, ρ ) with oscillating weights
Author(s) -
Kokilashvili Vakhtang,
Samko Natasha,
Samko Stefan
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510542
Subject(s) - mathematics , lipschitz continuity , type (biology) , bounded function , singular integral , exponent , operator (biology) , mathematical analysis , combinatorics , pure mathematics , integral equation , ecology , linguistics , philosophy , biochemistry , chemistry , repressor , gene , transcription factor , biology
We study the boundedness of singular Calderón–Zygmund type operators in the spaces L p (·) (Ω, ρ ) over a bounded open set in ℝ n with the weight ρ ( x ) = $ \prod ^m_{k=1} $ w k (| x – x k |), x k ∈ $ \bar \Omega $ , where w k has the property that $ r^{ {n \over {p(x_k)}} } $ w k ( r ) ∈ $ \Phi ^0_n $ , where $ \Phi ^0_n $ is a certain Zygmund‐type class. The boundedness of the singular Cauchy integral operator S Γ along a Carleson curve Γ is also considered in the spaces L p (·) (Γ, ρ ) with similar weights. The weight functions w k may oscillate between two power functions with different exponents. It is assumed that the exponent p (·) satisfies the Dini–Lipschitz condition. The final statement on the boundedness is given in terms of the index numbers of the functions wk (similar in a sense to the Boyd indices for the Young functions defining Orlicz spaces). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)