Premium
Asymptotics of block Toeplitz determinants generated by factorable matrix functions with equal partial indices
Author(s) -
Karlovich Alexei Yu.
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510540
Subject(s) - mathematics , toeplitz matrix , monotonic function , block (permutation group theory) , integer (computer science) , complement (music) , pure mathematics , combinatorics , matrix (chemical analysis) , discrete mathematics , mathematical analysis , biochemistry , chemistry , materials science , complementation , computer science , phenotype , composite material , gene , programming language
We prove asymptotic formulas for block Toeplitz matrices with symbols admitting right and left Wiener–Hopf factorizations such that all partial indices are equal to some integer number. We consider symbols and Wiener–Hopf factorizations in Wiener algebras with weights satisfying natural submultiplicativity, monotonicity, and regularity conditions. Our results complement known formulas for Hölder continuous symbols due to Böttcher and Silbermann. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)