z-logo
Premium
Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of ℝ n
Author(s) -
Shvartsman Pavel
Publication year - 2006
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200510418
Subject(s) - mathematics , characterization (materials science) , sobolev space , approximations of π , pure mathematics , besov space , mathematical analysis , combinatorics , interpolation space , functional analysis , chemistry , physics , biochemistry , gene , optics
We give an intrinsic characterization of the restrictions of Sobolev $W^{k}_{p}$ (ℝ n ), Triebel–Lizorkin $F^{s}_{pq}$ (ℝ n ) and Besov $B^{s}_{pq}$ (ℝ n ) spaces to regular subsets of ℝ n via sharp maximal functions and local approximations. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom