z-logo
Premium
Unboundedness of solutions of a class of planar Hamiltonian systems
Author(s) -
Yang Xiaojing,
Lo Kueiming
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410557
Subject(s) - mathematics , planar , symplectic geometry , hamiltonian (control theory) , hamiltonian system , class (philosophy) , pure mathematics , mathematical physics , matrix (chemical analysis) , combinatorics , mathematical analysis , chemistry , philosophy , computer science , mathematical optimization , computer graphics (images) , epistemology , chromatography
In this paper, the unboundedness of solutions for the following planar Hamilton system Ju ′ = ∇ H ( u ) + h ( t ) is discussed, where the function H ( u ) ∈ C 2 ( R 2 , R ) is positive for u ≠ 0 and is positively ( q , p )‐quasihomogeneous of quasi‐degree pq , where p > 1 and $ 1 \over p $ + $ 1 \over q $ = 1, h : S 1 → R 2 with h ∈ L ∞ (0, 2 π ) is 2 π ‐periodic and J is the standard symplectic matrix. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom