z-logo
Premium
On a semilinear elliptic equation with singular term and Hardy–Sobolev critical growth
Author(s) -
Chen Jianqing
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410517
Subject(s) - mathematics , sobolev space , elliptic curve , term (time) , mathematical analysis , partial differential equation , work (physics) , elliptic partial differential equation , physics , quantum mechanics , thermodynamics
In a previous work [6], we got an exact local behavior to the positive solutions of an elliptic equation. With the help of this exact local behavior, we obtain in this paper the existence of solutions of an equation with Hardy–Sobolev critical growth and singular term by using variational methods. The result obtained here, even in a particular case, relates with a partial (positive) answer to an open problem proposed in: A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 , 494–522 (2001). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here