z-logo
Premium
Tauberian theorem for m‐spherical transforms on the Heisenberg group
Author(s) -
Chang DerChen,
Eby Wayne M.
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410516
Subject(s) - heisenberg group , mathematics , bar (unit) , connection (principal bundle) , combinatorics , space (punctuation) , type (biology) , group (periodic table) , mathematical physics , mathematical analysis , geometry , physics , quantum mechanics , ecology , linguistics , philosophy , biology , meteorology
In this paper we prove a Tauberian type theorem for the space L $ ^1 _{\bf m} $ ( H n ). This theorem gives sufficient conditions for a L $ ^1 _{\bf 0} $ ( H n ) submodule J ⊂ L $ ^1 _{\bf m} $ ( H n ) to make up all of L $ ^1 _{\bf m} $ ( H n ). As a consequence of this theorem, we are able to improve previous results on the Pompeiu problem with moments on the Heisenberg group for the space L ∞ ( H n ). In connection with the Pompeiu problem, given the vanishing of integrals ∫   | z |= r   iz m L g f ( z , 0) dσ ( z ) = 0 for all g ∈ H n and i = 1, 2 for appropriate radii r 1 and r 2 , we now have the (improved) conclusion $ {\bar {\bf Z}}^{\bf m} $ f ≡ 0, where $ {\bar {\bf Z}}^{\bf m} $ = $ \bar Z^{m_1}_1 $ · · · $ \bar Z^{m_n}_n $ and $ \bar Z_j $ form the standard basis for T (0,1) ( H n ). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom