Premium
Tauberian theorem for m‐spherical transforms on the Heisenberg group
Author(s) -
Chang DerChen,
Eby Wayne M.
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410516
Subject(s) - heisenberg group , mathematics , bar (unit) , connection (principal bundle) , combinatorics , space (punctuation) , type (biology) , group (periodic table) , mathematical physics , mathematical analysis , geometry , physics , quantum mechanics , ecology , linguistics , philosophy , biology , meteorology
In this paper we prove a Tauberian type theorem for the space L $ ^1 _{\bf m} $ ( H n ). This theorem gives sufficient conditions for a L $ ^1 _{\bf 0} $ ( H n ) submodule J ⊂ L $ ^1 _{\bf m} $ ( H n ) to make up all of L $ ^1 _{\bf m} $ ( H n ). As a consequence of this theorem, we are able to improve previous results on the Pompeiu problem with moments on the Heisenberg group for the space L ∞ ( H n ). In connection with the Pompeiu problem, given the vanishing of integrals ∫ | z |= r iz m L g f ( z , 0) dσ ( z ) = 0 for all g ∈ H n and i = 1, 2 for appropriate radii r 1 and r 2 , we now have the (improved) conclusion $ {\bar {\bf Z}}^{\bf m} $ f ≡ 0, where $ {\bar {\bf Z}}^{\bf m} $ = $ \bar Z^{m_1}_1 $ · · · $ \bar Z^{m_n}_n $ and $ \bar Z_j $ form the standard basis for T (0,1) ( H n ). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)