z-logo
Premium
The Cauchy problem for quasilinear SG‐hyperbolic systems
Author(s) -
Cappiello Marco,
Zanghirati Luisa
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410511
Subject(s) - mathematics , sobolev space , initial value problem , cauchy problem , class (philosophy) , space (punctuation) , pure mathematics , mathematical analysis , argument (complex analysis) , cauchy distribution , hyperbolic partial differential equation , partial differential equation , linguistics , philosophy , biochemistry , chemistry , artificial intelligence , computer science
We study the Cauchy problem for a class of quasilinear hyperbolic systems with coefficients depending on ( t , x ) ∈ [0, T ] × ℝ n and presenting a linear growth for | x | → ∞. We prove well‐posedness in the Schwartz space (ℝ n ). The result is obtained by deriving an energy estimate for the solution of the linearized problem in some weighted Sobolev spaces and applying a fixed point argument. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom