Premium
The Cauchy problem for quasilinear SG‐hyperbolic systems
Author(s) -
Cappiello Marco,
Zanghirati Luisa
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410511
Subject(s) - mathematics , sobolev space , initial value problem , cauchy problem , class (philosophy) , space (punctuation) , pure mathematics , mathematical analysis , argument (complex analysis) , cauchy distribution , hyperbolic partial differential equation , partial differential equation , linguistics , philosophy , biochemistry , chemistry , artificial intelligence , computer science
We study the Cauchy problem for a class of quasilinear hyperbolic systems with coefficients depending on ( t , x ) ∈ [0, T ] × ℝ n and presenting a linear growth for | x | → ∞. We prove well‐posedness in the Schwartz space (ℝ n ). The result is obtained by deriving an energy estimate for the solution of the linearized problem in some weighted Sobolev spaces and applying a fixed point argument. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)