z-logo
Premium
Asymptotic behavior of solutions to the perturbed simple pendulum problems with two parameters
Author(s) -
Shibata Tetsutaro
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410494
Subject(s) - mathematics , simple (philosophy) , eigenvalues and eigenvectors , constant (computer programming) , pendulum , mathematical analysis , mathematical physics , set (abstract data type) , pure mathematics , combinatorics , physics , quantum mechanics , computer science , programming language , philosophy , epistemology
We consider the perturbed simple pendulum equation– u ″( t ) + μ | u ( t )| p –1 u ( t ) = λ sin u ( t ),  t ∈ I ≔ (– T , T ),u ( t ) > 0,  t ∈ I ,u (± T ) = 0,where p > 1 is a constant, λ > 0 and μ ∈ R are parameters. The purpose of this paper is to clarify the structure of the solution set. To do this, we study precisely the asymptotic shape of the solutions when λ ≫ 1 as well as the asymptotic behavior of variational eigenvalue μ ( λ ) as λ → ∞. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom