z-logo
Premium
Multiplicity results near the principal eigenvalue for boundary‐value problems with periodic nonlinearity
Author(s) -
Cañada A.
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410477
Subject(s) - mathematics , eigenvalues and eigenvectors , multiplicity (mathematics) , mathematical analysis , bifurcation , zero (linguistics) , nonlinear system , boundary value problem , principal value , pure mathematics , combinatorics , linguistics , philosophy , physics , quantum mechanics
Let us consider the boundary‐value problemwhere g : ℝ → ℝ is a continuous and T ‐periodic function with zero mean value, not identically zero, ( λ , a ) ∈ ℝ 2 and $ \tilde h $ ∈ C [0, π ] with ∫ π 0 $ \tilde h $ ( x ) sin x dx = 0. If λ 1 denotes the first eigenvalue of the associated eigenvalue problem, we prove that if ( λ , a ) → ( λ 1 , 0), then the number of solutions increases to infinity. The proof combines Liapunov–Schmidt reduction together with a careful analysis of the oscillatory behavior of the bifurcation equation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom