z-logo
Premium
Non‐differentiability points of Cantor functions
Author(s) -
Li Wenxia
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410470
Subject(s) - mathematics , cantor function , cantor set , disjoint sets , probability measure , combinatorics , differentiable function , borel set , hausdorff measure , hausdorff dimension , measure (data warehouse) , probability distribution , hausdorff space , disjoint union (topology) , packing dimension , discrete mathematics , pure mathematics , mathematical analysis , minkowski–bouligand dimension , fractal dimension , fractal , statistics , computer science , database
Let the Cantor set C in ℝ be defined by C = ∪ rj =0 h j ( C ) with a disjoint union, where the h j 's are similitude mappings with ratios 0 < a j < 1. Let μ be the self‐similar Borel probability measure on C corresponding to the probability vector ( p 0 , p 1 , …, p r ). Let S be the set of points at which the probability distribution function F ( x ) of μ has no derivative, finite or infinite. For the case where p i > a i we determine the packing and box dimensions of S and give an approach to calculate the Hausdorff dimension of S . (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom