z-logo
Premium
On the point spectrum of ℋ︁ –2 ‐singular perturbations
Author(s) -
Albeverio Sergio,
Dudkin Mykola,
Konstantinov Alexei,
Koshmanenko Volodymyr
Publication year - 2007
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410461
Subject(s) - mathematics , orthonormal basis , countable set , hilbert space , eigenvalues and eigenvectors , operator (biology) , spectrum (functional analysis) , separable space , space (punctuation) , pure mathematics , set (abstract data type) , mathematical analysis , combinatorics , discrete mathematics , biochemistry , chemistry , physics , linguistics , philosophy , repressor , quantum mechanics , computer science , transcription factor , gene , programming language
We prove that for any self‐adjoint operator A in a separable Hilbert space ℋ and a given countable set Λ = { λ i } i ∈ℕ of real numbers, there exist ℋ –2 ‐singular perturbations à of A such that Λ ⊂ σ p ( à ). In particular, if Λ = { λ 1 ,…, λ n } is finite, then the operator à solving the eigenvalues problem, à ψ k = λ k ψ k , k = 1,…, n , is uniquely defined by a given set of orthonormal vectors { ψ k } nk =1 satisfying the condition span { ψ k } nk =1 ∩ dom (| A | 1/2 ) = {0}. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom