z-logo
Premium
Certain classes of potentials for p ‐Laplacian to be non‐degenerate
Author(s) -
Zhang Meirong
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200410342
Subject(s) - mathematics , degenerate energy levels , exponent , eigenvalues and eigenvectors , laplace operator , dirichlet problem , dirichlet distribution , neumann boundary condition , p laplacian , boundary value problem , dirichlet boundary condition , dirichlet eigenvalue , combinatorics , norm (philosophy) , boundary (topology) , mathematical analysis , pure mathematics , dirichlet's principle , physics , quantum mechanics , philosophy , linguistics , political science , law
Given a positive integer n and an exponent 1 ≤ α ≤ ∞. We will find explicitly the optimal bound r n such that if the L α norm of a potential q ( t ) satisfies ‖ q ‖   L   α ( I )< r n then the n th Dirichlet eigenvalue of the onedimensional p ‐Laplacian with the potential q ( t ): (| u ′| p –2 u ′)′ + ( λ + q ( t )) | u | p –2 u = 0 (1 < p < ∞) will be positive. Using these bounds, we will construct, for the Dirichlet, the Neumann, the periodic or the antiperiodic boundary conditions, certain classes of potentials q ( t ) so that the p ‐Laplacian with the potential q ( t ) is non‐degenerate, which means that the above equation with λ = 0 has only the trivial solution verifying the corresponding boundary condition. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom