z-logo
Premium
Application of Mhaskar‐Prestin operators to the convergence of orthonormal expansions
Author(s) -
Mashele H. P.
Publication year - 2010
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310600
Subject(s) - mathematics , orthonormal basis , convergence (economics) , exponential function , polynomial , prestin , pure mathematics , mathematical analysis , combinatorics , anatomy , medicine , physics , quantum mechanics , cochlea , economics , outer hair cells , economic growth
Let I be either R or (–1, 1), and let W : I → (0, ∞). Assume that W 2 is a weight. We study the quasi‐interpolatory polynomial operators τ l , n , m introduced by Mhaskar and Prestin, for Freud weights, Erdös weights, and the exponential weights on (–1, 1). We investigate boundedness of τ l , n , m in weighted L p spaces. We then use this result to show thatfor even exponetial weights (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom