z-logo
Premium
Regions of variability for convex functions
Author(s) -
Yanagihara Hiroshi
Publication year - 2006
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310449
Subject(s) - mathematics , regular polygon , class (philosophy) , combinatorics , convex function , unit (ring theory) , pure mathematics , geometry , computer science , mathematics education , artificial intelligence
Let be the class of convex univalent functions f in the unit disc normalized by f (0) = f ′(0) – 1 = 0. For z 0 ∈ and | λ | ≤ 1 we shall determine explicitly the regions of variability {log f ′( z 0 ): f ∈ , f ″(0) = 2 λ }. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom