z-logo
Premium
Jump processes and nonlinear fractional heat equations on metric measure spaces
Author(s) -
Hu Jiaxin,
Zähle Martina
Publication year - 2006
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310352
Subject(s) - mathematics , heat kernel , dirichlet form , measure (data warehouse) , sobolev space , minkowski–bouligand dimension , mathematical analysis , hausdorff measure , heat equation , hausdorff dimension , nonlinear system , space (punctuation) , dimension (graph theory) , pure mathematics , dirichlet distribution , fractal dimension , fractal , boundary value problem , physics , linguistics , philosophy , quantum mechanics , database , computer science
Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump process is a Sobolev–Slobodeckij space, and the embedding theorems for this space are derived by using the heat kernel technique. As an application, we investigate nonlinear fractional heat equations of the form$$ { {\partial u} \over {\partial t} }(t, x) = - (- {\rm \Delta})^{\sigma} u(t, x) + u(t, x)^{p} $$with non‐negative initial values on a metric‐measure space F , and show the non‐existence of non‐negative global solution if 1 < p ≤ 1 + $ { {\sigma \beta} \over {\alpha} } $ , where α is the Hausdorff dimension of F whilst β is the walk dimension of F . (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom