z-logo
Premium
Functional calculus under Kreiss type conditions
Author(s) -
Vitse Pascale
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310341
Subject(s) - mathematics , functional calculus , type (biology) , banach space , polynomial , norm (philosophy) , calculus (dental) , operator (biology) , holomorphic functional calculus , pure mathematics , space (punctuation) , algebraic number , algebra over a field , mathematical analysis , approximation property , computer science , law , medicine , ecology , biochemistry , chemistry , dentistry , repressor , political science , transcription factor , gene , biology , operating system
It is shown that for an algebraic Banach space operator T , the Kreiss condition, ‖( zI – T ) –1 ‖ ≤ $ {C \over {| z | - 1} } $ , | z | > 1, implies the following functional calculus estimate$$ \Vert f (T) \Vert \le {16 \over {\pi} }\, C \cdot {\rm deg} (T) \, \Vert f \Vert _{\infty}\, , $$where deg( T ) is the degree of the minimal polynomial annihilating T . This result extends the known estimates of the powers of T for Kreiss operators on finite dimensional spaces. In the case of a general Kreiss operator, an estimate of the rational calculus is proved:$$ \Vert r(T) \Vert \le {16 \over {\pi} }\, C ( {\rm deg}(r) + 1) \, \Vert r \Vert _{\infty} \, . $$Similar estimates hold for the polynomial calculus under generalized Kreiss conditions. A link is also established between the sharp constant in the first estimate and the norm of the best solution for a Nevanlinna–Pick type interpolation problem in analytic Besov classes. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom