z-logo
Premium
On Descartes' rules of signs and their exactness
Author(s) -
Peña J. M.
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310335
Subject(s) - mathematics , polynomial , basis (linear algebra) , pure mathematics , algebra over a field , calculus (dental) , mathematical analysis , geometry , dentistry , medicine
This paper revisits the Descartes' rules of signs and provides new bounds for the number of complex roots of a polynomial in certain complex regions. We also prove that the Descartes' rules associated with the Bernstein basis are exact for polynomials whose roots are real. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom