z-logo
Premium
A note on operator‐valued Fourier multipliers on Besov spaces
Author(s) -
Bu Shangquan,
Kim JinMyong
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310330
Subject(s) - mathematics , multiplier (economics) , bounded function , fourier transform , hilbert space , banach space , pure mathematics , bounded operator , space (punctuation) , function space , mathematical analysis , discrete mathematics , linguistics , philosophy , economics , macroeconomics
Let X be a Banach space. We show that each m : ℝ \ {0} → L ( X ) satisfying the Mikhlin condition sup x ≠0 (‖ m ( x )‖ + ‖ xm ′( x )‖) < ∞ defines a Fourier multiplier on B sp,q (ℝ; X ) if and only if 1 < p < ∞ and X is isomorphic to a Hilbert space; each bounded measurable function m : ℝ → L ( X ) having a uniformly bounded variation on dyadic intervals defines a Fourier multiplier on B sp,q (ℝ; X ) if and only if 1 < p < ∞ and X is a UMD space. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom