z-logo
Premium
Bases and quasi‐reflexivity in Fréchet spaces
Author(s) -
Valdivia Manuel
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310266
Subject(s) - mathematics , reflexivity , banach space , subspace topology , pure mathematics , countable set , space (punctuation) , product (mathematics) , fréchet space , reflexive space , interpolation space , mathematical analysis , functional analysis , geometry , sociology , linguistics , philosophy , social science , biochemistry , chemistry , gene
A Fréchet space E is quasi‐reflexive if, either dim( E ″/ E ) < ∞, or E ″[ β ( E ″, E ′)]/ E is isomorphic to ω . A Fréchet space E is totally quasi‐reflexive if every separated quotient is quasi‐reflexive. In this paper we show, using Schauder bases, that E is totally quasi‐reflexive if and only if it is isomorphic to a closed subspace of a countable product of quasi‐reflexive Banach spaces. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom