z-logo
Premium
Quasi‐Lipschitz condition in potential theory
Author(s) -
Rautmann Reimund,
Solonnikov Vsevolod
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310255
Subject(s) - lipschitz continuity , mathematics , infimum and supremum , bounded function , vorticity , norm (philosophy) , domain (mathematical analysis) , lipschitz domain , pure mathematics , mathematical analysis , vortex , physics , political science , law , thermodynamics
The velocity $ \vec v $ of an incompressible flow in a bounded three‐dimensional domain is represented by its vorticity $ \vec j $ with the help of an apparently new representation formula. Using this formula we prove a quasi‐Lipschitz estimate for $ \vec v $ in dependence of the supremum norm of $ \vec j $ . Our quasi‐Lipschitz bound extends to the case where $ \vec v $ is represented by any continuous $ \vec j $ ≠ rot $ \vec v $

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom