z-logo
Premium
A relative index on the space of 3‐dimensional embeddable CR‐structures of finite type
Author(s) -
Greiner Peter,
Staubach Wolfgang,
Wang Wei
Publication year - 2005
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310247
Subject(s) - mathematics , bar (unit) , type (biology) , projection (relational algebra) , space (punctuation) , operator (biology) , eigenvalues and eigenvectors , combinatorics , pure mathematics , deformation (meteorology) , index (typography) , mathematical analysis , physics , chemistry , algorithm , ecology , linguistics , philosophy , biochemistry , repressor , quantum mechanics , meteorology , gene , transcription factor , world wide web , computer science , biology
For a small deformation Φ of a 3‐dimensional pseudoconvex embeddable CR‐structure of finite type, we prove that Φ defines an embeddable CR‐structure if and only if the Szegö projection from ker $ ^{\rm \Phi} {\bar \partial} _{b} $ to ker $ {\bar \partial} _{b} $ is a Fredholm operator. This defines a relative index which is in this case equal to the negative of number of small eigenvalues of the operator $ ^{\rm \Phi} \bar \partial _{b}^{*} \, ^{\rm \Phi} \bar \partial _{b}^{} $ . We also prove a cocycle formula for the relative index. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom