z-logo
Premium
A strongly degenerate diffusion equation with strong absorption
Author(s) -
Winkler Michael
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310221
Subject(s) - mathematics , degenerate energy levels , bounded function , initial value problem , diffusion equation , weak solution , absorption (acoustics) , mathematical analysis , cauchy problem , extinction (optical mineralogy) , diffusion , mathematical physics , pure mathematics , chemistry , physics , thermodynamics , quantum mechanics , mineralogy , economy , acoustics , economics , service (business)
It is shown that the Cauchy problem in ℝ for the strongly degenerate parabolic equation$$ u_t = u^p u_{xx} - u^{-q} \chi _{ \{u>o \} }\, , \quad p \ge 1 \, , \quad q > -1 \, , $$has a nonnegative weak solution for any nonnegative bounded continuous initial datum, provided that q ≤ p – 1, while there is no (continuous) weak solution for q > p – 1. The evolution of the spatial positivity set { u ( t ) > 0}, continuity of the free boundary and the extinction rate are also investigated. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom