z-logo
Premium
Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces
Author(s) -
Di Fazio Giuseppe,
Zamboni Pietro
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310185
Subject(s) - mathematics , carnot cycle , lipschitz continuity , hölder condition , sobolev space , mathematical analysis , lipschitz domain , harnack's inequality , pure mathematics , sobolev inequality , physics , thermodynamics
In this note we prove the Harnack inequality and the Hölder continuity for weak solutions of quasilinear subelliptic equation of the form$$ \sum _{j=1}^{m} X^*_j (x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0\, , $$where u belongs to Sobolev spaces with respect to a system of locally Lipschitz vector fields. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom