z-logo
Premium
Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p (·) and W k,p (·)
Author(s) -
Diening Lars
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310157
Subject(s) - mathematics , sobolev space , combinatorics , bounded function , ball (mathematics) , lipschitz continuity , riesz potential , boundary (topology) , domain (mathematical analysis) , lebesgue integration , standard probability space , mathematical analysis
We study the Riesz potentials I α f on the generalized Lebesgue spaces L p (·) (ℝ d ), where 0 < α < d and I α f ( x ) ≔ ∫   ℝ   d| f ( y )| | x – y | α – d dy . Under the assumptions that p locally satisfies | p ( x ) – p ( x )| ≤ C /(– ln | x – y |) and is constant outside some large ball, we prove that I α : L p (·) (ℝ d ) → L p ♯ (·) (ℝ d ), where $ {\textstyle {1 \over {p ^{\sharp} (x)}} = {1 \over {p(x)}} - {\alpha \over d}} $ . If p is given only on a bounded domain Ω with Lipschitz boundary we show how to extend p to $ \tilde p $ on ℝ d such that there exists a bounded linear extension operator ℰ : W 1, p (·) (Ω) ↪ $ W^{1, {\tilde p}} $ (ℝ d ), while the bounds and the continuity condition of p are preserved. As an application of Riesz potentials we prove the optimal Sobolev embeddings W k,p (·) (ℝ d ) ↪ L p *(·) (R d ) with $ {\textstyle {1 \over {p ^{\ast} (x)}} = {1 \over {p(x)}} - {k \over d}} $ and W 1, p (·) (Ω) ↪ L p *(·) (Ω) for k = 1. We show compactness of the embeddings W 1, p (·) (Ω) ↪ L q (·) (Ω), whenever q ( x ) ≤ p *( x ) – ε for some ε > 0. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom