z-logo
Premium
Slow and fast convergence to local dimensions of self‐similar measures
Author(s) -
Olsen L.
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310145
Subject(s) - mathematics , omega , combinatorics , hausdorff dimension , dimension (graph theory) , binary logarithm , iterated function , measure (data warehouse) , projection (relational algebra) , iterated function system , function (biology) , hausdorff measure , discrete mathematics , mathematical analysis , fractal , physics , algorithm , evolutionary biology , computer science , biology , database , quantum mechanics
Let K and μ be the self‐similar set and the self‐similar measure associated with an iterated function system with probabilities ( S i , p i ) i =1,…, N satisfying the Open Set Condition. Let Σ = {1, …, N } ℕ denote the full shift space and let π : Σ → K denote the natural projection. The (symbolic) local dimension of μ at ω ∈ Σ is defined by $ \lim _{n} { {\log \mu K _{\omega \vert n}} \over {\log {\rm diam} \, K_{\omega \vert n} } } $ where K ω | n = S   ω   1○ … ○ S   ω   n( K ) for ω = ω 1 ω 2 … ∈ Σ, and the (symbolic) multifractal spectrum of μ is defined by\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ f_{s} (\alpha) := {\rm dim} \, \pi \,\bigg \{ \omega \in \Sigma \; \bigg \vert \lim _n \, { {\log \mu K _{\omega \vert n}} \over {\log {\rm diam} \, K_{\omega \vert n} } }= \alpha \bigg \} \, , \quad \alpha \ge 0 \, , $$ \end{document}where dim denotes the Hausdorff dimension. In this paper we study the speed with which the ratio $ { {\log \mu K _{\omega \vert n}} \over {\log {\rm diam} \, K_{\omega \vert n} } } $ converges. In particular, we prove that for all (sufficiently large) speeds γ , the set of points\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ \bigg \{ \omega \in \Sigma \; \bigg \vert \limsup _n \; { {\bigg \vert \log \mu K _{\omega \vert n} - \alpha \log {\rm diam} \, K _{\omega \vert n} \bigg \vert} \over {\sqrt {n \log \, \log n} } } = \gamma \bigg \} $$ \end{document}for which the ratio log $ { {\log \mu K _{\omega \vert n}} \over {\log {\rm diam} \, K_{\omega \vert n} } } $ converges to its limit with speed equal to γ , has full dimension. i.e.\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ {\rm dim} \; \pi \bigg \{ \omega \in \Sigma \; \bigg \vert \limsup _n \; { {\bigg \vert \log \mu K _{\omega \vert n} - \alpha \log {\rm diam} \, K _{\omega \vert n} \bigg \vert} \over {\sqrt {n \log \, \log n} } } = \gamma \bigg \} = f_{s} (\alpha) \, . $$ \end{document}(© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom