z-logo
Premium
Enveloppes polynômiales d'ensembles compacts invariants
Author(s) -
Bou Attour Latifa,
Faraut Jacques
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310140
Subject(s) - mathematics , holomorphic function , automorphism , bounded function , polynomial , invariant (physics) , domain (mathematical analysis) , envelope (radar) , type (biology) , pure mathematics , combinatorics , mathematical analysis , mathematical physics , telecommunications , radar , computer science , ecology , biology
We consider the following problem: let V ℂ be a finite dimensional vector space, and U be a compact group of ℂ‐linear automorphisms of V ℂ . The polynomial envelope $ \hat Q $ of a compact set Q ⊂ V ℂ is defined as\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document} $$ {\hat Q} = \bigg \{ z \in V^{\mathbb C} \bigg | \quad {\rm for \, all} \quad p \in {\mathcal P} (V^{\mathbb C}), \quad \left \vert p(z) \right \vert \le {\mathop {\rm sup} \limits _{\zeta \in Q}} \left \vert p (\zeta) \right \vert \bigg \} \, , $$ \end{document}where ( V ℂ ) denotes the space of holomorphic polynomial functions on V ℂ . The problem is to determine the polynomial envelope of a compact set which is U ‐invariant. We solve the problem when U is the isotropy subgroup at the origin of the automorphism group of a bounded symmetric domain of tube type. The case of a domain of type II has been solved by C. Sacré [1992], and, for a domain of type IV, it has been solved by L. Bou Attour [1993]. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom