z-logo
Premium
Spaces of Bessel‐potential type and embeddings: the super‐limiting case
Author(s) -
Neves Júlio S.
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310136
Subject(s) - bessel function , limiting , mathematics , context (archaeology) , embedding , logarithm , type (biology) , pure mathematics , space (punctuation) , lipschitz continuity , mathematical analysis , computer science , mechanical engineering , paleontology , ecology , artificial intelligence , engineering , biology , operating system
We consider Bessel‐potential spaces modelled upon Lorentz‐Karamata spaces and establish embedding theorems in the super‐limiting case. In addition, we refine a result due to Triebel, in the context of Bessel‐potential spaces, itself an improvement of the Brézis‐Wainger result (super‐limiting case) about the “almost Lipschitz continuity” of elements of H 1+ n/p p (ℝ n ). These results improve and extend results due to Edmunds, Gurka and Opic in the context of logarithmic Bessel potential spaces. We also give examples of embeddings of Besselpotential type spaces which are not of logarithmic type. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom