Premium
Zeros of eigenfunctions of a class of generalized second order differential operators on the Cantor set
Author(s) -
Freiberg Uta,
Löbus JörgUwe
Publication year - 2004
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310133
Subject(s) - mathematics , eigenfunction , order (exchange) , class (philosophy) , cantor set , differential operator , set (abstract data type) , measure (data warehouse) , distribution (mathematics) , pure mathematics , mathematical analysis , differential (mechanical device) , eigenvalues and eigenvectors , physics , finance , quantum mechanics , database , artificial intelligence , computer science , engineering , economics , programming language , aerospace engineering
Generalized second order differential operators of the form $ {d \over {d \mu}} {d \over {dx}} $ when μ is a selfsimilar measure whose support is the classical Cantor set are considered. The asymptotic distribution of the zeros of the eigenfunctions is determined. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom