z-logo
Premium
On the spectral norm of algebraic numbers
Author(s) -
Popescu Angel,
Popescu Nicolae,
Zaharescu Alexandru
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310106
Subject(s) - mathematics , combinatorics , norm (philosophy) , algebraic number , physics , mathematical analysis , philosophy , epistemology
In this paper we continue to study the spectral norms and their completions ([4]) in the case of the algebraic closure \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} of ℚ in ℂ. Let \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} be the completion of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \overline {\mathbb Q} $ \end{document} relative to the spectral norm. We prove that \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} can be identified with the R‐subalgebra of all symmetric functions of C ( G ), where C ( G ) denotes the ℂ‐Banach algebra of all continuous functions defined on the absolute Galois group G = Gal \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ {\overline {\mathbb Q}} / {\mathbb Q} $ \end{document} . We prove that any compact, closed to conjugation subset of ℂ is the pseudo‐orbit of a suitable element of \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} . We also prove that the topological closure of any algebraic number field in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} is of the form \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $\widetilde{\mathbb{Q}[x]}$ \end{document} with x in \documentclass{article} \usepackage{amssymb} \pagestyle{empty} \begin{document} $ \widetilde{\overline{\mathbb{Q}}} $ \end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom