z-logo
Premium
Analytic continuation and identities involving heat, Poisson, wave and Bessel kernels
Author(s) -
Jorgenson Jay,
Lang Serge
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310086
Subject(s) - heat kernel , mathematics , bessel function , poisson kernel , continuation , poisson distribution , riemannian manifold , kernel (algebra) , mathematical analysis , gravitational singularity , meromorphic function , manifold (fluid mechanics) , analytic continuation , bessel process , pure mathematics , orthogonal polynomials , gegenbauer polynomials , statistics , mechanical engineering , classical orthogonal polynomials , computer science , engineering , programming language
In this article we use classical formulas involving the K –Bessel function in two variables to express the Poisson kernel on a Riemannian manifold in terms of the heat kernel. We then use the small time asymptotics of the heat kernel on certain Riemannian manifolds to obtain a meromorphic continuation of the associated Poisson kernel to all values of complex time with identifiable singularities. This result reproves in a different setting by different means a well–known theorem due to Duistermaat and Guillemin [DG 75]. Also, we develop analytic expressions for the heat kernel beyond asymptotic expansions. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom