z-logo
Premium
On some new properties of the gamma function and the Riemann zeta function
Author(s) -
Liao Liangwen,
Yang ChungChung
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310078
Subject(s) - mathematics , riemann zeta function , riemann hypothesis , prime zeta function , arithmetic zeta function , functional equation , particular values of riemann zeta function , function (biology) , riemann xi function , pure mathematics , prime (order theory) , gamma function , mathematical analysis , differential equation , combinatorics , evolutionary biology , biology
In this paper, we have exhibited, by utilizing value distribution theory, some new properties of the Gamma function Γ( z ) and the Riemann zeta function ζ( z ). Specifically, we have proved that both of the two functions are prime and the Riemann zeta function, like Γ( z ), does not satisfy any algebraic differential equation with coefficients in ℒ 0 . Moreover, the two functions do not satisfy any functional equation of the form P (Γ, ζ, z ) ≡ 0, where P ( x , y , z ) is a nonconstant polynomial in x , y and z .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom