z-logo
Premium
Estimates of hyperbolic equations in Hardy spaces
Author(s) -
Chang Der–Chen,
Lee Yong–Seok
Publication year - 2003
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200310051
Subject(s) - mathematics , combinatorics , hardy space , mathematical physics , mathematical analysis
The aim of this paper is to study estimates of hyperbolic equations in Hardy classes. Consider the Cauchy problem P ( D t ,D x ) u ( t, x ) = 0 for x ∈ ℝ d and t > 0 with the initial conditions D j t u (0, x ) = g j ( x ), j = 0, 1, …, m – 1. We assume that the symbol ( τ, ξ ) of P ( D t ,D x ) can be factorized as ( τ, ξ ) = $ \prod ^{m}_{j=1} $ ( τ – ϕ j ( ξ )) where ϕ j ( ξ ) = $ \left( \xi ^{2n_{j}}_{1} + \ldots + \xi ^{2n_{j}}_{d} \right)^{{1\over {2n_{j}}}} $ , j = 1, …, m . We assume further that g j ∈ H p k (ℝ d ) for j = 1, …, m – 1. Then the solution u of the problem (3.13) is in H p (ℝ d ) provided k ≥ ( d – 1) $ \left\vert {1 \over p} - {1 \over 2}\right\vert $ and $ {{2n-2} \over {2n-1}} $ < p < ∞. Here n = max{ n 1 , …, n m }. In particular, P ( D t , D x ) u = $ {{\partial ^2 u} \over {\partial t^2}} $ – Δ u = 0 with u (0, x ) = f ( x ) and $ {{\partial u} \over {\partial t}} $ (0, x ) = g ( x ), then the solution u of the wave equation is in H p (ℝ d ) provided k ≥ ( d – 1) $ \left\vert {1 \over p} - {1 \over 2}\right\vert $ and 0 < p < ∞.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom